Uniquely Restricted Matchings in Interval Graphs
نویسندگان
چکیده
منابع مشابه
Uniquely Restricted Matchings in Interval Graphs
A matching M in a graph G is said to be uniquely restricted if there is no other matching in G that matches the same set of vertices as M . We describe a polynomial-time algorithm to compute a maximum cardinality uniquely restricted matching in an interval graph, thereby answering a question of Golumbic et al. (“Uniquely restricted matchings”, M. C. Golumbic, T. Hirst and M. Lewenstein, Algorit...
متن کاملComputing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs
A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on c...
متن کاملUniquely Restricted Matchings and Edge Colorings
A matching in a graph is uniquely restricted if no other matching covers exactly the same set of vertices. This notion was defined by Golumbic, Hirst, and Lewenstein and studied in a number of articles. Our contribution is twofold. We provide approximation algorithms for computing a uniquely restricted matching of maximum size in some bipartite graphs. In particular, we achieve a ratio of 9/5 f...
متن کاملLocal maximum stable sets in bipartite graphs with uniquely restricted maximum matchings
A maximum stable set in a graph G is a stable set of maximum size. S is a local maximum stable set of G, and we write S ∈0(G), if S is a maximum stable set of the subgraph spanned by S ∪ N (S), where N (S) is the neighborhood of S. A matching M is uniquely restricted if its saturated vertices induce a subgraph which has a unique perfect matching, namely M itself. Nemhauser and Trotter Jr. (Math...
متن کاملBipartite graphs with uniquely restricted maximum matchings and their corresponding greedoids
A maximum stable set in a graph G is a stable set of maximum size. S is a local maximum stable set of G, and we write S ∈ Ψ(G), if S is a maximum stable set of the subgraph spanned by S∪N(S), where N(S) is the neighborhood of S. A matching M is uniquely restricted if its saturated vertices induce a subgraph which has a unique perfect matching, namely M itself. Nemhauser and Trotter Jr. [12], pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2018
ISSN: 0895-4801,1095-7146
DOI: 10.1137/16m1074631